
A recursive algorithm for calculating the longest �ow path and its

iterative implementation?

Huidae Cho
a,∗

aInstitute for Environmental and Spatial Analysis, University of North Georgia, Oakwood, GA 30566, USA

ART ICLE INFO

Keywords:
Longest �ow path
Watershed
Hydrology
Open source
GIS
GRASS GIS

ABSTRACT

The longest �ow path is widely used for studying hydrology. Traditionally,
both or either of upstream and downstream �ow length rasters are required
to calculate the longest �ow path. When processing multiple subwatersheds,
this approach requires separate calculations of the downstream �ow length
raster for all the subwatersheds. However, raster computation involves a
lot of disk input/output and can be slow. By de�ning the longest �ow
path recursively and introducing a branching strategy based on Hack's law,
this study proposes a new longest �ow path algorithm that computes as
few rasters as possible to reduce computational time and improve e�ciency.
To avoid stack over�ows by excessive recursion, its iterative counterpart
algorithm was also proposed. The proposed algorithms were implemented
as a GRASS GIS module. Benchmark experiments proved that the new
module outperforms an existing tool for a commercial GIS.

Software availability

� GRASS GIS software: Free under the GNU GPL license

� GRASS GIS: https://grass.osgeo.org/

� r.accumulate: https://github.com/OSGeo/grass-addons/tree/master/grass7/raster/

r.accumulate

* Recursive version with the -r �ag (r.accumulate-recursive)

?

NOTICE: This is the author's version of a work that was accepted for publication in Environmental Mod-
elling & Software. Changes resulting from the publishing process, such as peer review, editing, corrections,
structural formatting, and other quality control mechanisms may not be re�ected in this document. Changes
may have been made to this work since it was submitted for publication. A de�nitive version was subsequently
published in Environmental Modelling & Software 131C, 104774 (July 2020), doi:10.1016/j.envsoft.2020.104774.

CITATION: Cho, H., 2020. A recursive algorithm for calculating the longest �ow path and its iterative im-
plementation. Environmental Modelling & Software 131C, 104774.

© 2020. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http:

//creativecommons.org/licenses/by-nc-nd/4.0.

∗Corresponding author

hcho@isnew.info (H. Cho)

https://hcho.isnew.info (H. Cho)
orcid(s): 0000-0003-1878-1274 (H. Cho)

https://twitter.com/HuidaeCho (H. Cho)

https://www.linkedin.com/profile/view?id=HuidaeCho (H. Cho)

Cho: Preprint submitted to Elsevier Page 1 of 24

https://grass.osgeo.org/
https://github.com/OSGeo/grass-addons/tree/master/grass7/raster/r.accumulate
https://github.com/OSGeo/grass-addons/tree/master/grass7/raster/r.accumulate
https://doi.org/10.1016/j.envsoft.2020.104774
http://creativecommons.org/licenses/by-nc-nd/4.0
http://creativecommons.org/licenses/by-nc-nd/4.0
https://hcho.isnew.info
https://twitter.com/HuidaeCho
https://www.linkedin.com/profile/view?id=HuidaeCho

A recursive algorithm for calculating the longest �ow path and its iterative implementation

* Iterative version by default without the -r �ag (r.accumulate-iterative)

� Operating system requirements

� Microsoft Windows XP or newer, macOS 10.4.10 or newer, recent GNU/Linux or a UNIX

variant

1. Introduction

This paper proposes a new recursive algorithm and its iterative implementation for calculating

the longest �ow path. The longest �ow path is one of major watershed parameters (Huang and Lee,

2016) used by many hydrologic models including the Hydrologic Engineering Center's Hydrologic

Modeling System (HEC-HMS) (Feldman, 2000), the Soil and Water Assessment Tool (SWAT)

(Arnold et al., 1998), the Storm Water Management Model (SWMM) (Rossman and Huber, 2016),

and the Topography Model (TOPMODEL) (Beven and Kirkby, 1979) to name a few. It is mainly

used to calculate the time of concentration and the lag time for hydrologic analysis (Maidment and

Djokic, 2000; Feldman, 2000; Olivera, 2001). The United States Geological Survey (USGS) uses it

to analyze annual peak-�ow data and create regression equations that estimate the magnitude and

frequency of �oods (Gotvald et al., 2009; Feaster et al., 2014; Williams-Sether, 2015).

A �ow path is the hydrologic path or watercourse from one point to another in the watershed.

The longest �ow path represents the �ow path from a headwater (typically the watershed divide)

to the outlet that is longer than all other �ow paths in the watershed. It can set-theoretically be

de�ned as
−−→
LFP ∈

{−→
FPi :

∣∣∣−→FPi

∣∣∣ ≥ ∣∣∣−→FPj

∣∣∣ ∀i 6= j
}

(1)

where
−−→
LFP is a longest �ow path, and i and j are indices for �ow paths (

−→
FP) in the watershed.

There can be more than one longest �ow path in some case depending on the topography.

A typical procedure to determine the longest �ow path requires the Digital Elevation Model

(DEM) and involves a Geographic Information System (GIS) (Smith, 1995). To the best of the

author's knowledge and based on an extensive literature review, Smith (1995) introduced the original

longest �ow path algorithm for GIS. This algorithm calculates two �ow length rasters for an outlet

cell using the DEM and adds both rasters to determine the longest �ow path raster (Smith, 1995;

Olivera and Maidment, 1998). The Arc Hydro toolbox (Maidment, 2002) for ArcGIS Pro (Esri,

2020a) provides a longest �ow path tool that does not require the calculation of an upstream �ow

length raster. However, in spite of its important role in hydrologic studies, not much attention has

been paid to the e�ciency of the existing approaches.

This study improves upon the decades-old algorithm and introduces a new recursive algorithm

and its iterative implementation that is more memory e�cient. Section 2 reviews Smith's (1995)

work, open source implementations of his algorithm for the Geographic Resources Analysis Support

System (GRASS) GIS (Neteler et al., 2012), and the algorithm of the Arc Hydro Longest Flow Path

tool for ArcGIS Pro. Section 3 elaborates on the new algorithms and designs benchmark experiments

Cho: Preprint submitted to Elsevier Page 2 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

for comparing the performance of the new module and the Arc Hydro tool. Benchmark results are

analyzed and discussed in Sections 4 and 5, respectively, and Section 6 summarizes �ndings.

2. Background

2.1. Smith's �ow-length-based approach

The length of the longest �ow path for an outlet cell can be obtained by calculating the upstream

�ow length raster (Smith, 1995). However, �nding the longest �ow path itself also requires the

calculation of the downstream �ow length raster and the summation of both �ow length rasters

(Smith, 1995). The downstream �ow length (DFL) is the �ow length starting from the outlet. It

can be written as

DFLi =

0 i = 0 at the outlet

FLi−1,i +DFLi−1 i ≥ 1
(2)

where DFLi is the downstream �ow length from the outlet to cell i, FLi−1,i is the �ow length

between cells i − 1 and i, and i is 0 at the outlet and increases as we traverse in the upstream

direction. The upstream �ow length (UFL) is the �ow length starting from a headwater. Similar

to the DFL, the UFL can be written as

UFLi =

0 i = 0 at a headwater

FLi−1,i +max(UFLi−1) i ≥ 1
(3)

where UFLi is the upstream �ow length from a headwater to cell i, FLi−1,i is the �ow length between

cells i−1 and i, and i is 0 at a headwater and increases as we traverse in the downstream direction.

The DFL and UFL are maximum at the headwater on the longest �ow path and the outlet,

respectively, and both maximums are the same and referred to as the longest �ow length (LFL).

The longest �ow path (
−−→
LFP) is the path de�ned by all cells with a value equal to the LFL de�ned

by

LFL = max(DFL+UFL) (4)

where DFL and UFL represent the downstream and upstream �ow length rasters, respectively

(boldface notations for sets of cells and features such as raster and vector maps). However, it would

not be possible to simply �nd cells with the exact LFL value because of rounding errors and, in

practice, a small error tolerance is needed to �nd all cells as follows:

LFL− ε ≤ ci ≤ LFL+ ε (5)

where ci is the value of cell i and ε is a positive error tolerance which should be close to 0. Finally,

the longest �ow path can be determined by connecting these cells.

Figure 1 shows an example of the DFL and the longest �ow path. In Figure 1a, the DFL is 0

(black) at the outlet and high (bright) at headwater cells. The UFL raster is not shown because

Cho: Preprint submitted to Elsevier Page 3 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

Table 1

GRASS GIS raster-based modules. All modules internally invoke other modules written in the C language.

Module Release date Language Description

r.lfp/v.lfp September 5, 2014 Python Single outlet; Raster-to-vector issue; Deprecated by new r.lfp

lfp.sh February 20, 2017 Bash Multiple outlets; Raster-to-vector issue; Not part of GRASS GIS

r.lfp May 15, 2018 Python Multiple outlets; No raster-to-vector issue

lfp2.sh February 9, 2019 Bash Multiple outlets; Simpli�ed vector handling; Raster-to-vector issue;

Not part of GRASS GIS

most cells outside the longest �ow path have a low value (dark) and the cells along the longest �ow

path (bright) are hard to see because of the cell size. Adding the DFL and UFL rasters yields a

summation raster (DFL+UFL), which is used to derive the longest �ow path shown in Figure 1b.

1000000

1020000

1040000

1060000

N
o

rt
h

in
g

 (
m

)

1220000 1240000 1260000 1280000 1300000 1320000 1340000

Easting (m)

Projection: NAD83 / Conus Albers

100000 200000

Downstream flow length (m)

Watershed
Outlet

(a) Downstream �ow length.

1000000

1020000

1040000

1060000

N
o

rt
h

in
g

 (
m

)

1220000 1240000 1260000 1280000 1300000 1320000 1340000

Easting (m)

Projection: NAD83 / Conus Albers

50 100

Elevation (m)

Watershed
Longest flow path
Outlet

(b) Longest �ow path.

Figure 1: Downstream �ow length raster and longest �ow path for the Satilla River watershed in Georgia.

2.2. GRASS GIS modules

Historically, GRASS GIS (Neteler et al., 2012) has supported a raster-based approach for cal-

culating the longest �ow path since the release of the r.lfp and v.lfp modules in 2014. Table 1

summarizes raster-based modules that the author developed for GRASS GIS. A critical problem

in the raster-based approach can occur during a raster-to-vector conversion because the conversion

process does not understand hydrology and simply reshapes a series of cells into a linear feature

without considering �ow directions. Depending on the conversion algorithm, a cluster of cells may

be simpli�ed and some cells can be missing from the vector output. This conversion issue is noted

as a raster-to-vector issue in Table 1. Figure 2 shows an example of this raster-to-vector conversion

issue. The vector longest �ow path initially follows �ow directions faithfully, but it takes a short

cut skipping one cell in the middle. This conversion issue violates the hydrologic validity of the

vector result.

The deprecated r.lfp was responsible for computing the raster longest �ow path while v.lfp

Cho: Preprint submitted to Elsevier Page 4 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

Figure 2: Hydrologically valid raster (white cells), but invalid vector (blue line) longest �ow paths in Satilla
River, Georgia. The green arrows indicate �ow directions.

would convert it to vector. Only one outlet was supported at a time, which made these modules

ine�cient for processing multiple outlets because of heavy disk input/output (I/O). These modules

were deprecated by the new r.lfp. The new r.lfp module addressed the raster-to-vector conversion

issue by tracing the �ow direction raster from headwater cells. This module directly generates the

vector longest �ow path and eliminated need for v.lfp. It also supports multiple outlets in one

run and can save substantial computational time. The major di�erence between this module and

the other modules is a lack of the upstream �ow length raster (UFL) in the algorithm. Only the

downstream �ow length raster (DFL) is computed for each outlet and the longest �ow path is

traced following the �ow direction raster (FDR) starting from headwater cells.

The lfp.sh module was developed to calculate longest �ow paths for a lot of watersheds. This

module tries to save computational time by calculating the upstream and downstream �ow length

rasters only once for the entire computational region encompassing all watersheds. The module

can handle multiple outlets on the same stream network, but its algorithm is rather complicated

because of heavy vector handling. However, it still converts raster to vector, which means that it

inherits the same hydrologic issue from its deprecated siblings. The lfp2.sh module was an attempt

to get rid of complicated vector handling from lfp.sh. These two modules were not released as part

of GRASS GIS because they were written in Bash (a non-o�cial scripting language for GRASS

GIS) (Free Software Foundation, 2014). Both modules calculate and sum the downstream and

upstream �ow length rasters at di�erent stages and extract cells whose value is equal to the longest

�ow length. The lfp.sh module creates the summation raster (DUFL) only once outside the main

loop to minimize disk I/O while the lfp2.sh module creates the upstream �ow length raster (UFL)

once outside the loop, but it calculates the downstream �ow length raster (DFL) for each outlet

to reduce vector edits.

All of these existing modules only support accumulated watersheds. For example, if there is

one outlet upstream of another, the longest �ow path for the downstream outlet will be delineated

Cho: Preprint submitted to Elsevier Page 5 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

for the entire watershed, not for the downstream subwatershed, leaving an overlap between the

two longest �ow paths. This way of calculating multiple longest �ow paths is not typically used

for hydrologic analysis, so these modules were not used for this study. However, based on an

independent test, these modules underperformed the new module introduced in Section 3 and were

found to be ine�cient in terms of computational time.

2.3. Arc Hydro tool

The Arc Hydro toolbox for ArcGIS Pro provides the Longest Flow Path tool written in Python

(van Rossum and Drake, 2009). Algorithm 1 shows its pseudocode. This tool only calculates the

downstream �ow length raster (DFL) for each subwatershed using the built-in �ow length tool and

�nds headwater cells with the longest �ow length from the boundary cells. It then traces down the

�ow direction raster starting from the headwater cells. The tool implicitly assumes that longest

�ow paths always start from the subwatershed divide because it searches only the boundary zone

for headwater cells.

Require: W . Subwatershed polygons
Require: FDR . Flow direction raster
1: n← |W| . Number of subwatersheds in W
2: for i← 1 to n do

3: Wi ← Subwatershed i from W
4: FDRi ← Clip FDR to Wi

5: Z← 1 if FDRi is not NoData else NoData
6: S← Shrink Z by one cell
7: N← 1 if S is NoData else 0
8: B← Bitwise AND of N and Z
9: B← NoData if B is 0 else Z . Subwatershed boundary cells
10: DFLi ← Calculate the downstream �ow length raster for subwatershed Wi using FDR
11: M← Calculate the zonal statistics maximum of DFLi by zone B . Boundary cells only
12: MN← 0 if DFLi is M else 1 . Boundary cells only
13: C← M if MN is 0 else NoData . Boundary cells only
14: O← Convert the C raster to points

15:
−→
L ← Trace FDR starting from the headwater points in O

16: if
∣∣∣−→L ∣∣∣ is equal to the length of intersection of

−→
L and Wi then

17:
−→
L ← Extend the downstream end of

−→
L to the boundary of Wi

. Regardless of the �ow direction at Oi? What about the upstream end?
18: end if

19:
−−→
LFPi ←

−→
L

20: end for

Algorithm 1: Pseudocode for the Longest Flow Path tool in Arc Hydro for ArcGIS Pro. Created
based on Python code analysis.

Cho: Preprint submitted to Elsevier Page 6 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

3. Methods

3.1. Recursive de�nition of the longest �ow path

The I/O of raster data often takes relatively a long computational time compared to actual

raster manipulation and becomes a bottleneck (Qin et al., 2014). It would be ideal to not use

raster data at all, but the most basic input is the �ow direction raster map and it is not feasible

to implement an algorithm that is purely vector-based. In this section, we approach the problem

of calculating the longest �ow path from a di�erent perspective and try to avoid calculating the

upstream and downstream �ow length rasters and summing these two rasters all together.

In fact, the longest �ow path de�ned by Eq. (1) can recursively be rede�ned as

−−→
LFPi ∈


{−−→
LFPj +

−→
L ji :

∣∣∣−−→LFPj +
−→
L ji

∣∣∣ ≥ ∣∣∣−−→LFPk +
−→
L ki

∣∣∣ ∀j, k ∈ UP, j 6= k
}

if UP 6= ∅{
~0
}

otherwise
(6)

where
−−→
LFPi is a longest �ow path for cell i,

−→
L ji is the �ow path from cells j to i, and UP is the set

of up to eight upstream neighbor cells �owing into cell i. In other words, if there are no upstream

neighbor cells, we have reached a headwater cell and the longest �ow path at the headwater cell

will be a zero vector (~0). If there are upstream neighbor cells, a longest �ow path for the current

cell can be determined by connecting its upstream neighbor cell's longest �ow path and the path

from the neighbor to the current cell. Since there can be maximum eight upstream neighbor cells,

one condition has to be satis�ed that the combined path of the upstream cell's longest �ow path

and the path from the neighbor to the current cell has to be longer than or equal to the length of

the combined path of any other neighbor cells.

This recursive de�nition of the longest �ow path looks simple, but it is not straightforward to

implement it in a computationally e�cient way because the number of possible upstream cells can

grow exponentially depending on the size, topography, and shape of the watershed. Assuming that

each cell receives �ow from n ≤ 8 upstream neighbor cells on average, we can estimate the number

of cells to visit v starting from one outlet towards upstream in s steps using the following equation:

v =

s∑
i=0

ni (7)

where s = 0 means that we are at the outlet. By plugging the number of cells on an M ×N map

into v and backcalculating s for v =M ×N , we can estimate how many steps we can traverse the

stream upwards before we have to visit all the cells on the map. For example, on a 1000×1000 map

with an average upstream neighbor cells n = 2, we would have to visit all the cells (a million) while

being able to traverse the stream only 19 steps upwards. For n = 3, it would take 13 steps upwards

until we have to visit all the million cells. In the worse case, when n = 8, it would take only seven

steps. Of course, not all cells have the same number of upstream neighbors and calculating the

actual number of steps would be more complicated. However, from these examples, we learned that

Cho: Preprint submitted to Elsevier Page 7 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

it would not be any e�cient computationally compared to the �ow-length-based approach.

To address the problem of an exponentially growing number of cells to visit in each step, we need

to devise some constraints that help us �lter out non-candidate neighbor cells as early as possible.

In the following sections, we will discuss the relationship between the longest �ow path and area of

watersheds, and develop a strategy that can �lter out neighbor cells whose potential longest �ow

length is shorter than others.

3.2. Branching strategy

Hack (1957) proposed a power-law relationship between the main channel length and area of

watersheds. This empirical relationship is usually referred to as Hack's law (Rigon et al., 1996) and

can be written as

L = cAh (8)

where L is the distance from the outlet to the drainage divide along the stream channel, A is the

watershed area, and c and h are Hack's coe�cient and exponent, respectively.

Many researchers have studied the signi�cance of h (Sassolas-Serrayet et al., 2018) and it is

generally believed to be slightly below 0.6 and greater than 0.5 (Rigon et al., 1996). Mesa and

Gupta (1987) derived a theoretical equation of h as a function of the watershed's magnitude n as

follows:

h(n) =
1

2

[
π + (π/n)1/2

π − 1/n

]
. (9)

For n = 1 and 1000, h is 1.147 and 0.509. Eq. (9) implies that h tends to converge to 0.5 as

n approaches in�nity and the minimum h value is 0.5. Sassolas-Serrayet et al. (2018) analyzed

Hack's coe�cient c using around 22,000 watersheds in Bhutan and found c between 1.5 and 2.5 for

h ≈ 0.5, which is consistent with previous studies (Sassolas-Serrayet et al., 2018). They proposed

an equation for c using the Gravelius compactness coe�cient (GC) (Gravelius, 1914) as follows:

c =
1

2
GC
√
π +

1

4

√
GC2π − 4 (10)

where GC is the ratio of the watershed perimeter to the circumference of the circle whose area is

equivalent to the watershed area. GC can be written as

GC =
P

2
√
πA

(11)

where P and A are the watershed perimeter and area, respectively. GC becomes 1 for perfectly

circular watersheds, imaginary of course, and starts growing as a watershed is being elongated

(Sassolas-Serrayet et al., 2018). The minimum GC allowed in Eq. (10) is
√
4/π yielding 1 as the

minimum c. The coe�cient c is not unitless and has a dimension of L1−2h where L denotes a length

unit. However, as h approaches 0.5, [c] tends to be L1−2×0.5 = 1 and c becomes practically unitless.

One consideration we have to take into account for this research is that the longest �ow path

Cho: Preprint submitted to Elsevier Page 8 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

does not always follow the main channel. For upstream-most subwatersheds, the de�nition of the

longest �ow path may agree with that of the main channel in Hack's law in some cases. However,

for downstream subwatersheds, the longest �ow path starts from non-stream land surface as shallow

surface runo� and enters the stream later. By de�nition, the longest �ow path is almost always

longer than the stream channel �owing through a subwatershed. For this reason, we cannot directly

use Eq. (8) with typical c and h values. Since the recursive de�nition in Eq. (6) traverses the �ow

path from downstream towards upstream, we want to eliminate in�owing neighbor cells that cannot

possibly generate a longest �ow path by comparing them with their peers at each branching cell.

This paper proposes that, just like the main channel length (L) in Hack's law, the longest �ow

length (LFL) be also estimated using Eq. (8) with a slightly di�erent interpretation. Since Hack's

law involves the watershed area, the �ow direction raster cannot be used alone in the new recursive

algorithm. Instead, �ow accumulation is computed using the �ow direction raster and is used to

estimate the subwatershed area at each cell. The basic idea for branching and eliminating neighbor

cells is simple. Let's say there are two in�owing neighbor cells. We take their �ow accumulation

values and calculate their potential minimum and maximum LFLs. If the maximum LFL of one

cell is shorter than the minimum LFL of the other cell, the former cannot generate a longest �ow

path because its theoretically longest LFL is still shorter than the other cell's theoretically shortest

LFL. The former is discarded from further recursion, and the latter survives and is further being

traversed and evaluated.

3.3. Longest and shortest longest �ow lengths

We will address the longest longest �ow length (LFLmax) �rst because estimating this distance

is more intuitive and easier. Given the �ow accumulation value (the number of upstream cells) at

a cell, in what con�guration would these upstream cells yield LFLmax? Travelling all these cells

diagonally only without any horizontal or vertical moves will result in LFLmax. Therefore, LFLmax

can be written as

LFLmax = s · FAC
√
2 (12)

where s is the width or height (mostly the same in any GIS) of one cell and FAC is the �ow

accumulation value at a neighbor cell.

Now, we will use Eq. (8) to estimate the shortest longest �ow length (LFLmin). Since we compare

one cell's LFLmax with another cell's LFLmin and decide whether or not to eliminate one of these

cells, it is important to be conservative in estimating LFLmin because we do not want to discard

those cells that would have yielded a longest �ow path if they were not discarded accidentally. If

LFLmin is estimated to be too short, the recursive algorithm will not be able to �lter out many

non-candidate cells or not at all in the worse case as if there were no branching strategy in place. In

contrast, if it is estimated to be too long, the algorithm will start getting rid of good candidate cells

and can generate non-longest �ow paths. Considering that the longest �ow path is usually longer

than the main channel and it is safer to underestimate LFLmin not to miss cells that are perfectly

Cho: Preprint submitted to Elsevier Page 9 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

�ne, the paper proposes the following equation for LFLmin:

LFLmin = s
√
FAC. (13)

Eq. (13) can be obtained by plugging c = 1, h = 0.5, and A = s2 · FAC into Eq. (8). A value of

1 for c is less than its minimum value
√
4/π for Eq. (10) and a value of 0.5 for h is its minimum

value for Eq. (9). It means that Eq. (13) is always shorter than Eq. (8) with the minimum c and h

for Eqs. (10) and (9), respectively, and being conservative. Also, the unit of c is unitless because h

is 0.5.

2
√ A

/π

(a) Circular.

w

2
A
/w

√ (w
/2
)2
+
(2
A
/w

)2

(b) Isosceles Triangular.

w

A
/w

√ (w
/2
)2
+
(A
/w

)2

(c) Rectangular.

Figure 3: LFLmin for di�erent simpli�ed watersheds. The solid black and thick blue lines represent the watershed
boundary and shortest longest �ow path, respectively. The blue and red dots indicate the furthest headwater and
outlet points, respectively. The width and area of the watershed are referred to as w and A, respectively.

Figure 3 shows three di�erent simpli�ed shapes of watersheds and their shortest longest �ow

path (LFP) with its LFL, assuming that headwater points are located on the watershed boundary.

In these simpli�ed watersheds, the shortest LFP must be a straight line connecting the remotest

point (blue dots) and the outlet (red dots). Any other straight paths will not be able to drain the

furthest point and any non-straight paths will be longer than the shortest LFP. For hypothetical

circular watersheds, LFL = 2
√
A/π. For isosceles triangular and rectangular watersheds, by taking

the derivative of the LFL with respect to w, we can obtain

dLFL

dw
= LFL−1

(w
4
− 4A2w−3

)
(14)

and
dLFL

dw
= LFL−1

(w
4
−A2w−3

)
, (15)

respectively. By setting Eqs. (14) and (15) to 0, we found that w = 2
√
A and w =

√
2A minimize

the LFLs of isosceles triangular and rectangular watersheds, respectively. Plugging these w values

into the LFL equations in Figure 3 yields the shortest LFLs of
√
2A and

√
A, respectively, for both

types of watersheds. Since we use the FAC raster to calculate the watershed area, we can substitute

s2 · FAC for A in the �nal LFL equations. Therefore, all three LFLs for the simpli�ed watersheds

Cho: Preprint submitted to Elsevier Page 10 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

can be rewritten as 2s
√
FAC/π, s

√
2 · FAC, and s

√
FAC, and we con�rmed that all these lengths

are longer than or equal to the shortest LFL de�ned in Eq. (13).

3.4. New GRASS GIS module

The recursive algorithm and its iterative variant take a �ow direction raster and outlet points as

input parameters. It was a design decision not to provide subwatershed polygons because delineating

them is an additional step. However, since subwatershed polygons are not provided, these algorithms

have no knowledge about the shape of subwatersheds. In addition, FAC values read from the

�ow accumulation raster are only accumulated. Without �ow �subaccumulation� introduced in

Algorithm 2, these algorithms would only generate longest �ow paths for accumulated watersheds.

The �ow subaccumulation process takes each of input outlet points and subtracts its FAC value from

the FAC value of its downstream cells. The �nal result of this process is a raster where individual

subwatershed regions have their own �ow accumulation computed independent of their upstream

�ow contribution. If the �ow direction raster is clipped to each subwatershed, �ow accumulation is

computed, and resulting �ow accumulation rasters are patched together for all subwatersheds, the

patched raster will be identical to the �ow subaccumulation raster. This process is computationally

very light because it only traces down, not up, along the downstream portion of LFPs. Both

recursive and iterative algorithms perform �ow subaccumulation before starting the up-tracing

process.

1: procedure Subaccumulate(FDR, FAC, O)
2: n← |O| . Number of outlets in O
3: for i← 1 to n do

4: Oi ← Outlet i from O
5: FACi ← FAC value at Oi

6: for j ∈ {All downstream cell indices of Oi} do . Use FDR for down tracing
7: Oj ← Outlet j from O
8: FACj ← FAC value at Oj

9: if FACj > FACi then . If this cell still needs to be processed
10: FACj ← FACj − FACi . Replace FACj in FAC
11: end if

12: end for

13: end for

14: end procedure

Algorithm 2: Pseudocode for the Subaccumulate function for both recursive and iterative algo-
rithms.

Algorithm 3 is used to �nd in�owing neighbor cells and calculate their attributes including the

accumulation value, downstream length, and theoretical minimum and maximum LFLs, which will

be used later in the main logic for up-tracing in both recursive and iterative algorithms.

Algorithms 4 and 5 present pseudocode for the main procedure and its subroutine, respectively,

for implementing recursive LFP tracing. Algorithms 6 and 7 present pseudocode for the main pro-

Cho: Preprint submitted to Elsevier Page 11 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

1: procedure FindUp(FDR, FAC, x, y, l, UP, HL)
2: s← Horizontal/vertical cell size
3: d← s

√
2 . Diagonal cell size

4: UP← Find up to 8 in�owing neighbor cells using FDR
. Count those cells only whose accumulation is less than the FAC value at (x, y)

5: n← |UP| . Number of in�owing neighbor cells in UP
6: for i← 1 to n do

7: Store the coordinates of UPi as its coordinates attribute . UPi,coordinates

8: Read and store the FAC value at UPi as its accumulation attribute . UPi,accumulation

9: if UPi is a diagonal neighbor then
10: L← l + d
11: else

12: L← l + s
13: end if

14: Store L as its downstream length attribute . UPi,downlength

15: Store L+ s×
√
UPi,accumulation as its minimum length attribute . UPi,minlength

16: Store L+ d×UPi,accumulation as its maximum length attribute . UPi,maxlength

17: end for

18: if n > 1 then . If there are multiple in�owing neighbor cells
19: UP← Sort cells in UP by their maximum length in descending order
20: UP←

{
UPi :

√
2×UPi,accumulation ≥

√
UP1,accumulation for 1 ≤ i ≤ n

}
. Discard UPi whose theoretical max LFL is shorter than the theoretical min LFL of UP1

21: end if

22: m← |HL| . Number of headwater cells found so far in HL
23: if m > 0 then . If any headwater cells were found before
24: n← |UP| . Number of in�owing neighbor cells in UP
25: UP← {UPi : |UPi,maxlength| ≥ |HLj | for 1 ≤ i ≤ n, 1 ≤ j ≤ m}

. Discard UPi whose theoretical max LFL is shorter than the LFLs of all headwater cells
26: end if

27: end procedure

Algorithm 3: Pseudocode for the FindUp function for both recursive and iterative algorithms.

cedure and its subroutine, respectively, for implementing LFP tracing iteratively using a stack as its

primary data structure for managing neighbor cells. The r.accumulate GRASS GIS module imple-

ments both recursive (with the -r �ag) and iterative (default without the -r �ag) LFP algorithms.

This module is written in the C language (Kernighan and Ritchie, 1988). To di�erentiate between

the two algorithms in the same GRASS GIS module, the recursive and iterative implementations

will be referred to as r.accumulate-recursive and r.accumulate-iterative, respectively. The reason

why the author implemented the iterative version is for stack safety in deep recursion. Any function

or procedure calls use the stack memory to store data about the calls until those routines return

to the caller (Reese, 2013). However, the size of this memory is limited and invoking a function

recursively too many times can cause a stack over�ow when the system runs out of stack memory

(Reese, 2013). In fact, this stack over�ow condition occurred in one of the experiments that will be

Cho: Preprint submitted to Elsevier Page 12 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

discussed in Section 4. By converting recursive calls into a last in �rst out (LIFO) data structure

using the heap memory (a stack in the heap memory), the iterative version avoids stack over�ows

that can be caused by deep recursion. In the recursive version, one LFP is searched for �rst all

the way to the upstream-most headwater cell of one neighbor cell and move to the next branch

(depth-�rst search) while, in the iterative version, all neighbor cells are pushed to the stack �rst,

move upstream by one cell, and repeat these two steps until we �nd an upstream-most headwater

cell (breadth-�rst search). This di�erence in search strategies becomes important when the size of

a subwatershed is large because depth-�rst search would require a lot of stack memory for excessive

recursion.

Require: FDR . Flow direction raster
Require: O . Outlets
1: FAC← Accumulate �ow using FDR . Accumulated cell counts
2: Subaccumulate(FDR, FAC, O) . Consider the subwatershed heierarchy
3: LFP← ∅ . LFP vector map
4: n← |O| . Number of outlets in O
5: for i← 1 to n do

6: (x, y)← Coordinates of Oi

7: HL← ∅ . Headwater set
8: TraceUp(FDR, FAC, x, y, 0, HL) . Discard the return value
9: if no headwater cells in HL then

10: fatal error . Failed to calculate
−−→
LFPi

11: end if

12: LFPi ← ∅ .
−−→
LFPi set

13: n← |HL| . Number of headwater cells
14: for j ← 1 to n do

15:
−→
LLj ← Trace FDR starting from HLj and create a vector line

16: LFPi ← LFPi ∪
{−→
LLj

}
. Store

−→
LLj as an

−−→
LFPi

17: end for

18: LFP← LFP ∪ LFPi . Add LFPi to LFP
19: end for

Algorithm 4: Pseudocode for r.accumulate-recursive.

3.5. Benchmark experiments

The states of Georgia and Texas in the United States were selected for benchmark experiments.

The 1 arcsecond (approximately 30m) National Elevation Dataset (NED) tiles were downloaded

from USGS (2020), patched, and clipped to the state boundaries of Georgia and Texas. A hundred

random outlet points were generated for each state once and the same set of outlets was used for

all the experiments for the same state.

There are many di�erent factors a�ecting the performance of software including system architec-

tures, central processing units (CPUs), clock speeds, the sizes of cache and random-access memory

(RAM), drive types, operating systems (OSs), compilers, software implementations, etc. (Lee et al.,

Cho: Preprint submitted to Elsevier Page 13 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

1: function TraceUp(FDR, FAC, x, y, l, HL)
2: if FAC value at (x, y) = 1 then . If a headwater cell is found
3: return true . Tracing was successful; stop recursion
4: end if

5: UP← ∅ . Placeholder for in�owing neighbor cells' attributes
. Attributes include coordinates, accumulation, downlength, and maxlength

6: FindUp(FDR, FAC, x, y, 0, UP, HL) . Find in�owing neighbor cells and attributes
7: n← |UP| . Number of in�owing neighbor cells in UP
8: if n = 0 then
9: return true . Tracing was successful; stop recursion
10: end if

11: for i← 1 to n do

12: (xi, yi)← Coordinates of upstream cell i
13: if TraceUp(FDR, FAC, xi, yi, UPi,downlength, HL) = true then

. If tracing was successful
14: if |HL| = 0 ∨UPi,downlength = HL1,downlength then

. If no headwater cells in HL or ties are found
15: HL← HL ∪ {UPi} . Add UPi to HL
16: else if UPi,downlength > HL1,downlength then

. If UPi,downlength is longer than existing downstream lengths
17: HL← {UPi} . Leave UPi only whose downstream length is the longest
18: end if

19: end if

20: end for . Repeast tracing from the next upstream cell
21: return false . Move one cell upstream; keep tracing recursively
22: end function

Algorithm 5: Pseudocode for the TraceUp function for r.accumulate-recursive.

2016; Micheloni and Olivo, 2017; Wang et al., 2019). However, because of limited computational

resources, the main purpose of the benchmark experiments in this study is to see how the disk

type and memory size impact the performance of the recursive (r.accumulate-recursive) and iter-

ative (r.accumulate-iterative) versions of the GRASS GIS module. The author used GRASS GIS

on two Linux systems with di�erent con�gurations including one with a lower clock speed, a hard

disk drive (HDD), and more memory, and the other with a higher clock speed, a solid-state drive

(SSD), and less memory. He also used the Longest Flow Path tool from the Arc Hydro toolbox

for ArcGIS Pro on a Windows system for benchmarking with commercial software. The Windows

system is equipped with the most recent CPU with the highest clock speed among the three sys-

tems and an SSD. Since the Windows system did not have access to GRASS GIS (administrative

rights are required to run the GRASS GIS installer), only the ArcGIS Pro tool was run on this

system. Similarly, ArcGIS Pro is not available for Linux, so only GRASS GIS was used on the

Linux systems.

Table 2 shows the system speci�cations used for experiments including OSs, CPUs, the amounts

of RAM, the sizes of swap partitions, and software versions. Since the Longest Flow Path tool in Arc

Cho: Preprint submitted to Elsevier Page 14 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

Require: FDR . Flow direction raster
Require: O . Outlets
1: FAC← Accumulate �ow using FDR . Accumulated cell counts
2: Subaccumulate(FDR, FAC, O) . Consider the subwatershed heierarchy
3: LFP← ∅ . LFP vector map
4: n← |O| . Number of outlets in O
5: for i← 1 to n do

6: (x, y)← Coordinates of Oi

7: LL← ∅ . Line set
8: TraceUp(FDR, FAC, x, y, LL)
9: if no lines in LL then

10: fatal error . Failed to calculate
−−→
LFPi

11: end if

12: LFPi ← ∅ .
−−→
LFPi set

13: m← |LL| . Number of lines in LL
14: for j ← 1 to m do

15: LFPi ← LFPi ∪ {
−→
LLj} . Store

−→
LLj as an

−−→
LFPi

16: end for

17: LFP← LFP ∪ LFPi . Add LFPi to LFP
18: end for

Algorithm 6: Pseudocode for r.accumulate-iterative.

Table 2

System speci�cations for experiments. MB and GB are 1,000,000B and 1,000,000,000B, respectively. The
system architecture is all x86_64 (64 bit architecture). Systems 1, 2, and 3 are referred to as Linux SSD, Linux
HDD, and Windows, respectively. The Linux SSD and HDD systems used the default stack size of 8MiB, which
is 8×1024×1024B. *: 3200MB/s sequential read, 1800MB/s sequential write. †: 7200 rev/min. ‡: 3200MB/s
sequential read, 2400MB/s sequential write.

OS CPU Disk type RAM Swap Software version

1Linux 4.14.39 Intel® Core� i5-7300U @ 2.60GHz SSD∗ 16GB 20GB GRASS GIS 7.9.dev
2Linux 4.4.172 Intel® Xeon® E5620 @ 2.40GHz HDD† 48GB 30GB GRASS GIS 7.9.dev
3Windows 10 Intel® Core� i7-8700 @ 3.20GHz SSD‡ 32GB 4864MB ArcGIS Pro 2.5.1

Arc Hydro Pro 2.0.165

Hydro Pro accepts subwatersheds instead of outlets, the Watershed tool built in ArcGIS Pro was

used to delineate 100 subwatershed raster maps �rst, which were then converted to polygon vector

maps using the Raster To Polygon tool before these experiments were conducted. The Longest

Flow Path tool in Arc Hydro Pro will be referred to as the Arc Hydro tool or simply Arc Hydro

hereafter because its name �Longest Flow Path� is too generic.

Two di�erent experiments were conducted including batch and non-batch mode experiments.

The batch mode experiment assumes a scenario where we want to compute longest �ow paths for

multiple outlets at once in one run of each program. It is expected to increase disk I/O compared to

the non-batch mode experiment explained later because a program needs to read in a �ow direction

Cho: Preprint submitted to Elsevier Page 15 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

1: procedure TraceUp(FDR, FAC, x, y, LL)
2: if FAC value at (x, y) = 1 then . If a headwater cell is found

3: return . No
−−→
LFP exists for the headwater cell

4: end if

5: UP← ∅ . Placeholder for in�owing neighbor cells' attributes
. Attributes include coordinates, accumulation, downlength, and maxlength

6: HL← ∅ . Headwater set
7: FindUp(FDR, FAC, x, y, 0, UP, HL) . Find in�owing neighbor cells and attributes
8: if no cells in UP then

9: return . Tracing was successful; stop tracing
10: end if

11: US← Push all in�owing neighbor cells in UP into US . |US| ← |UP|
. Last in �rst out (LIFO) stack space for upstream cells

12: while upstream cells in US do

13: u← Pop one in�owing neighbor cell from US . |US| ← |US| − 1
14: (xu, yu)← ucoordinates
15: lu ← udownlength
16: UP← ∅
17: FindUp(FDR, FAC, xu, yu, lu, UP, HL)
18: if upstream cells in UP then

19: US← Push all in�owing neighbor cells in UP into US . |US| ← |US|+ |UP|
20: else . No in�owing cells; found a headwater cell
21: if |HL| = 0∨ lu = HL1,downlength then. If no headwater cells in HL or ties are found
22: HL← HL ∪ {u} . Add u to HL
23: else if lu > HL1,downlength then . If lu is longer than existing downstream lengths
24: HL← {u} . Leave u only whose downstream length is the longest
25: end if

26: end if

27: end while

28: n← |HL| . Number of headwater cells
29: for i← 1 to n do

30:
−→
LLi ← Trace FDR starting from HLi and create a vector line

31: LL← LL ∪
{−→
LLi

}
. Add

−→
LLi to LL

32: end for

33: end procedure

Algorithm 7: Pseudocode for the TraceUp function for r.accumulate-iterative.

raster and calculate �ow accumulation and subaccumulation for the entire state, not just for the

area of interest. This experiment tests how fast and e�cient each program is at computing multiple

longest �ow paths once after reading input data. Each program is run 30 times independently for

each state. The results are used to calculate the average and standard deviation of run times. In

contrast, the non-batch mode experiment runs programs for each outlet (GRASS GIS module) or

subwatershed (Arc Hydro tool) at a time independently in a separate process. Since the Arc Hydro

tool uses subwatershed polygons as a mask, the GRASS GIS module also used the same polygons to

Cho: Preprint submitted to Elsevier Page 16 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

restrict the computational region to be fair. In this experiment, the burden of disk I/O is expected

to be lower than in the batch mode experiment because programs do not have to read in any data

outside the area of interest. This experiment allows to analyze the performance sensitivity of the

program to the subwatershed area. Each program is run once for each outlet independently; hence

there are 100 runs for each state because there are 100 outlets (or subwatersheds for the Arc Hydro

tool).

4. Results

4.1. Validation of longest �ow paths

First, we need to validate Eqs. (12) and (13) proposed for the longest and shortest longest �ow

lengths, respectively. For both states, the lengths of all calculated longest �ow paths were strictly

between LFLmin and LFLmax estimated using the equations. The Gravelius compactness coe�cient

(GC) calculated using Eq. (11) varied from 1.64 to 5.49. Plugging the GC into Eq. (11) yielded

Hack's coe�cient c of 1.99 to 7.25, which is greater than the assumed c = 1 in Eq. (13) for the

shortest longest �ow length.

For the state of Georgia, all the three programs have successfully completed 30 batch runs and

100 non-batch runs. However, for the state of Texas, r.accumulate-recursive failed to complete

all 30 batch runs and one non-batch run on both Linux SSD and HDD systems. In fact, the 30

batch runs failed because of the same subwatershed for which the one failed non-batch run was not

successful at calculating the longest �ow path with a segmentation fault error. Except for these

failed cases, r.accumulate-recursive and r.accumulate-iterative generated identical longest �ow paths

with a maximum error tolerance of 1× 10=8m due to round-o� errors in both experiments. Figure

4 shows the longest �ow paths generated by r.accumulate-iterative.

Figures 5 and 6 highlight major di�erences between the results from r.accumulate-iterative and

Arc Hydro. Because of the assumption made in the Arc Hydro tool where any longest �ow paths

must start from the drainage divide of a subwatershed and cannot start from its interior, it is clear

from Figure 5 that the Arc Hydro tool can generate inferior longest �ow paths that are not truly

the longest in some cases. Thirteen and six longest �ow paths in Georgia and Texas, respectively,

started from the interior of their subwatersheds and the Arc Hydro tool generated not-so longest

�ow paths that are shorter than those generated by r.accumulate-iterative. The probabilities of

generating invalid longest �ow paths are 13% and 6% out of 100 longest �ow paths for Georgia

and Texas, respectively. Figure 5a shows a relative error in length of 1.3%, but Figure 5b presents

a more extreme case where the error is 27.4%.

Another feature of the Arc Hydro tool is an extension of the end node of the longest �ow path,

but it simply extends the last node into the same direction as the last segment, not in the �ow

direction at the outlet cell as shown in Figure 6a. Last, from an independent run using a di�erent

dataset (Neteler and Mitasova, 2008), the Arc Hydro tool generated a shorter longest �ow path for

a subwatershed where the true longest �ow path actually starts from a boundary cell, which means

that this subwatershed satis�es the tool's drainage divide assumption, but the tool still failed to

Cho: Preprint submitted to Elsevier Page 17 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

1000000

1200000

1400000

N
o
rt

h
in

g
 (

m
)

1000000 1200000 1400000

Easting (m)Projection: NAD83 / Conus Albers

State boundary
Subwatersheds
Longest flow paths
Outlets

(a) Georgia.

400000

600000

800000

1000000

1200000

1400000

N
o
rt

h
in

g
 (

m
)

−1000000 −800000 −600000 −400000 −200000 0 200000

Easting (m)Projection: NAD83 / Conus Albers

State boundary
Subwatersheds
Longest flow paths
Outlets

(b) Texas.

Figure 4: Randomly generated 100 subwatershed outlets and longest �ow paths generated by r.accumulate-
iterative.

�nd the longest �ow path.

Subwatershed
Longest flow path by Arc Hydro (129,172 m)
Longest flow path by r.accumulate­iterative (129,611 m)

(a) Common path 127,897m, error = 129,611−127,897
129,611

= 1.3%.

Subwatershed
Longest flow path by Arc Hydro (26,636 m)
Longest flow path by r.accumulate­iterative (26,708 m)

(b) Common path 19,378m, error = 26,708−19,378
26,708

= 27.4%.

Figure 5: Longest �ow paths starting from the interior of subwatersheds.

4.2. Comparisons of elapsed times

Table 3 summarizes 30 elapsed times for processing all the 100 outlets in each state in the batch

mode experiment. Overall, the Arc Hydro tool was about 22 to 49 times slower than the GRASS

GIS module. For Georgia, the Linux SSD system was about two times faster than the Linux HDD

Cho: Preprint submitted to Elsevier Page 18 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

(a) Incorrectly extended (red line). The GRASS GIS module
does not currently extend the end node of a longest �ow
path, but it is trivial to implement this feature correctly.

(b) Not the longest �ow path (red) generated by an inde-
pendent run using the GRASS GIS North Carolina sample
dataset (Neteler and Mitasova, 2008).

Figure 6: Invalid longest �ow paths generated by the Arc Hydro tool. The red and blue lines show the longest
�ow paths calculated by the Arc Hydro tool and r.accumulate-recursive, respectively. The gray polygon and green
arrows represent the subwatershed and �ow directions, respectively.

Table 3

Elapsed times with standard deviations in seconds from the batch mode experiment. *: r.accumulate-recursive
failed to complete the Texas runs while processing the largest 51st subwatershed on both Linux systems.

State Total area System r.accumulate-recursive r.accumulate-iterative Arc Hydro

Georgia 80,081 km2 Linux SSD 19.845± 0.029 19.995± 0.028
Linux HDD 40.544± 0.901 40.813± 1.053
Windows 978.781± 4.744

Texas 187,198 km2 Linux SSD 228.212± 9.527∗ 238.292± 14.475
Linux HDD 163.178± 2.563∗ 164.761± 2.493
Windows 5273.845± 33.113

system. On the same Linux SSD system, the worst run of r.accumulate-recursive outperformed the

best run of r.accumulate-iterative. However, on the Linux HDD system, one r.accumulate-recursive

run was the worst of both versions and the range of r.accumulate-recursive except the worst outlier

was within the range of r.accumulate-iterative. For Texas, the Linux SSD system was about 1.4

times slower than the Linux HDD system. However, r.accumulate-recursive failed to complete on

both systems, so comparisons between the two versions were not made.

Table 4 summarizes 100 elapsed times for each state in the non-batch mode experiment. The

GRASS GIS module on both Linux SSD and HDD systems was about 34 to 97 times faster than

the Arc Hydro tool on the Windows system with an SSD drive. Figure 7 shows the performance

sensitivity of each program to the subwatershed area. For both states, the elapsed time of the

Arc Hydro tool grew exponentially with increasing subwatershed areas. Its log-linear regression

analysis yielded adjusted R2 values (R2
adj's) of 0.9194 and 0.8681 for Georgia and Texas (one outlier

excluded from Texas), respectively, with a p-value less than 2.2× 10=16. In contrast, the GRASS

Cho: Preprint submitted to Elsevier Page 19 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

Table 4

Elapsed times in seconds from the non-batch mode experiment. *: average elapsed time per km2. †: r.accumulate-
recursive failed to generate the longest �ow path for the largest 51st subwatershed in Texas.

State Total area System Statistic r.accumulate-recursive r.accumulate-iterative Arc Hydro

Georgia 80,081 km2 Linux SSD Total 30.831 31.304
Average∗ 0.000,38 0.000,39

Linux HDD Total 56.610 60.600
Average∗ 0.000,71 0.000,76

Windows Total 2038.314
Average∗ 0.025,45

Texas 187,198 km2 Linux SSD Total 64.130 † 64.629

Average∗ 0.000,34† 0.000,35

Linux HDD Total 112.618 † 115.343

Average∗ 0.000,60† 0.000,62

Windows Total 6191.002
Average∗ 0.033,07

GIS module exhibited a linear growth (R2
adj ≥ 0.9503 with a p-value < 2.2× 10−16) for both states.

5. Discussion

The GRASS GIS module on the Linux systems outperformed the Arc Hydro tool on Windows

in both batch and non-batch mode experiments even though the Windows system has the best

hardware speci�cations except the size of RAM (less than Linux HDD, but more than Linux SSD).

The performance of the Arc Hydro tool deteriorated exponentially as the subwatershed size grew

as opposed to the linear performance deterioration of the GRASS GIS module. This ine�ciency of

the Arc Hydro tool may be attributed to Esri's decision to implement the Arc Hydro toolbox using

their Python application programming interface (API) instead of the .NET (Microsoft Corporation,

2020) API which is a more advanced approach to extending the capabilities of ArcGIS Pro (Esri,

2020b). However, it is still to be investigated if the lower performance was actually due to the

additional Python layer between the frontend and its core engine or simply the tool's algorithm.

Without a .NET implementation of the Arc Hydro tool, it would not be feasible to determine which

was the case. The Arc Hydro tool not only was slower but also had three issues as follows:

1. longest �ow paths starting from the interior of subwatersheds were not correctly calculated

because of its boundary assumption where the tool assumes that longest �ow paths only start

from boundary cells (Figure 5),

2. for one non-benchmark run, it was not able to calculate the correct longest �ow path even

though the boundary assumption was not violated (Figure 6b), and

3. its end-node extension feature does not consider the �ow direction at the outlet cell (Figure

6a).

In the batch mode experiment, the Linux SSD system was faster than its HDD variant except for

Cho: Preprint submitted to Elsevier Page 20 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

●

●
●

●●

●●

●

●

●
●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●
●
●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●●

●●

●●

● ●

●
●●
●

●
●

●

●

●

●

●●

●

●

0 2000 4000 6000 8000

0.
1

0.
5

5.
0

50
.0

Subwatershed area (km2)

E
la

ps
ed

 ti
m

e
(s

ec
)

●

Arc Hydro
Log−linear regression of Arc Hydro
r.accumulate−recursive
r.accumulate−iterative

(a) Log-scale elapsed times versus subwatershed areas for
Georgia from Linux SSD.

●

●●

●●
●●

●

●
●
●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●●

●
●

●●

●

●

●●

●●

●
●

●●

● ●

●
●●
●

●
●

●

●

●
●

●●

●

●

0 2000 4000 6000 8000

0.
5

1.
0

1.
5

2.
0

Subwatershed area (km2)

E
la

ps
ed

 ti
m

e
(s

ec
)

● r.accumulate−recursive
r.accumulate−iterative
Linear regression of r.accumulate−recursive
Linear regression of r.accumulate−iterative

(b) Elapsed times versus subwatershed areas for Georgia
from Linux SSD.

Figure 7: Elapsed times versus subwatershed areas from the non-batch mode experiment. The Arc Hydro results
from the Windows system are plotted as a reference on (a). The ranges of R2

adj for the Arc Hydro tool (log-linear
regression) and GRASS GIS module (linear regression) are 0.8681 to 0.9194 and 0.9503 to 0.9691, respectively.
The largest 51st subwatershed that failed in Texas (an outlier) was excluded from the regression analysis of the
Arc Hydro results, but it was included in the regression analysis of the GRASS GIS results. The p-value for all
regression lines is less than 2.2× 10=16.

the case of Texas. Since the Linux HDD system has a slower CPU and HDD with more RAM, we can

see that the amount of memory played a more important role in processing the Texas subwatersheds.

Texas has about total 2 million integer (4 bytes) cells in the �ow direction raster which, when loaded

into memory, occupies 8GB. The GRASS GIS module additionally allocates 8GB to calculate a

�ow accumulation raster. Holding these two rasters in memory alone requires 16GB leaving only

on-disk swap space for other tasks such as recursion and storing outputs on the Linux SSD system,

which has 16GB system memory. The faster CPU did not help when memory ran out and the slower

swap space started kicking in. On the other hand, the Linux HDD system still has 32GB of RAM

for calculating longest �ow paths. However, even with the remaining 32GB memory, recursively

traversing the largest 51st subwatershed in Texas consumed up the 8MiB stack memory allocated

by the OS kernel to r.accumulate-recursive. The area of this subwatershed is 47,077.62 km2. Given

the 30m resolution of the elevation data, this area translates to total 52 million cells. Assuming

that only 5%�which is conservative compared to the size of the subwatershed�of the 52 million

cells need to be recursively visited to �nd the longest �ow path, the average stack size per visit (or

per recursive call) would be only 3 bytes (8 × 10242/(0.05 × 52 × 10002)), which is not enough to

store state information about each recursive function call including variables. This lack of stack

space caused a stack over�ow. Since all the 100 subwatersheds were being processed together

Cho: Preprint submitted to Elsevier Page 21 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

in one process, the stack over�ow resulted in no outputs at all. In contrast, with no recursive

calls, r.accumulate-iterative was able to leverage the swap space on the Linux SSD system or the

remaining 32GB memory on the Linux HDD system. Still, the Linux SSD system was slower

because a disk-based swap partition is slower than real memory.

In the non-batch mode experiment, the Linux SSD system consistently outperformed the Linux

HDD system. The stack over�ow issue did occur again with the largest Texas subwatershed, but

unlike in the batch mode experiment, r.accumulate-recursive calculated the other 99 longest �ow

paths successfully because each subwatershed was processed separately. Also, for the same reason,

the Linux SSD system ran out of memory only with this subwatershed and handled the other

subwatersheds smoothly with enough memory. Therefore, no performance hit was observed on this

system. Both Linux systems showed consistent performance per subwatershed area across the states

regardless of the total area (0.000,34 s/km2 to 0.000,39 s/km2 for Linux SSD and 0.000,60 s/km2 to

0.000,76 s/km2 for Linux HDD as shown in Table 4). We can use this consistency in performance

to predict computational times when running the GRASS GIS module.

In terms of the total computing time of the GRASS GIS module between the batch and non-

batch mode experiments, the former was faster than the latter for Georgia and vice versa for Texas.

For Georgia, it took more time to process individual subwatersheds separately. This added com-

putational time in the non-batch mode experiment can be explained by an overhead expense of

creating 100 separate output vector maps and repeating basic managerial tasks such as reading

header �les, adjusting computational regions, etc. However, for Texas, the non-batch mode experi-

ment was faster because processing one subwatershed at a time is much more memory e�cient than

processing all the subwatersheds in one process especially when there are many large subwatersheds

in the state.

In both experiments, r.accumulate-iterative (r.accumulate without the -r �ag) turned out to

be more robust with no failures and only slightly slower than its recursive sibling (r.accumulate

with the -r �ag). For this reason, it is recommended to use the r.accumulate module without

the -r �ag, which is the default. Currently, administrative rights are required to install GRASS

GIS on Microsoft Windows, which is why the r.accumulate module was only tested on the Linux

systems. However, GRASS GIS and the new module also support Microsoft Windows XP or newer

and macOS 10.4.10 or newer. Future research includes implementation of the proposed algorithms

for ArcGIS Pro and comparison of their performance with that of the GRASS GIS module.

6. Conclusions

In this paper, we studied the original longest �ow path approach and brie�y reviewed existing

longest �ow path programs. It was shown how hydrologically invalid longest �ow paths could be

generated by naively converting raster results to vector and a recursive de�nition of the longest �ow

path was introduced. Naturally, a new recursive algorithm was proposed based on the recursive

de�nition for calculating the longest �ow path using depth-�rst search and its iterative counterpart

Cho: Preprint submitted to Elsevier Page 22 of 24

A recursive algorithm for calculating the longest �ow path and its iterative implementation

algorithm was developed using breadth-�rst search. These algorithms use equations for the longest

and shorted longest �ow lengths that were derived from Hack's law. A branching strategy was

devised to help the proposed algorithms �lter out inferior neighbor cells and speed up traversal.

Using randomly generated 100 outlets and subwatersheds each in Georgia and Texas, performance

comparisons were made between the recursive and iterative versions of the r.accumulate GRASS

GIS module that implement the proposed algorithms, and the Longest Flow Path tool in the Arc

Hydro toolbox for ArcGIS Pro. An implicit assumption in the Arc Hydro tool was tested and shown

to not work well in some case. With increasing subwatershed areas, the performance of the Arc

Hydro tool exponentially deteriorated while that of the GRASS GIS module linearly declined. The

GRASS GIS module outperformed the Arc Hydro tool, but the recursive implementation failed to

process the largest subwatershed in Texas because of a stack over�ow resulting from deep recursion.

The iterative implementation was more robust in terms of memory usage and successfully calculated

all the longest �ow paths for both states. Since the iterative implementation was only slightly slower

than its recursive counterpart, the iterative version is highly recommended over the other version.

GRASS GIS and the new module support Microsoft Windows XP or newer with administrative

rights, macOS 10.4.10 or newer, recent GNU/Linux or a UNIX variant. Future work includes

implementation of the proposed algorithms for ArcGIS Pro.

Acknowledgements

The author thanks Dr. Daniel P. Ames for handling this manuscript and an anonymous reviewer

for providing constructive comments. He also thanks the GRASS GIS community for their continued

support for improving the historical modules and stimulating the development of the new software.

References

Arnold, J.G., Srinivasan, R., Muttiah, R.S., Williams, J.R., 1998. Large area hydrologic modelling and assessment, Part I:

Model development. Journal of the American Water Resources Association 34, 73�89.

Beven, K.J., Kirkby, M.J., 1979. A physically based, variable contributing area model of basin hydrology. Hydrological Sciences

Bulletin 24, 43�69.

Esri, 2020a. ArcGIS Pro 2.5. URL: https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview.

Esri, 2020b. Proconcepts migrating to ArcGIS Pro. URL: https://github.com/esri/arcgis-pro-sdk/wiki/

ProConcepts-Migrating-to-ArcGIS-Pro.

Feaster, T.D., Gotvald, A.J., Weaver, J.C., 2014. Methods for Estimating the Magnitude and Frequency of Floods for Urban and

Small, Rural Streams in Georgia, South Carolina, and North Carolina, 2011. US Geological Survey Scienti�c Investigations

Report 2014-5030. U.S. Department of the Interior, U.S. Geological Survey.

Feldman, A.D., 2000. Hydrologic Modeling System HEC-HMS Technical Reference Manual. U.S. Army Corps of Engineers, In-

stitute for Water Resources, Hydrologic Engineering Center. Davis, CA. URL: http://www.hec.usace.army.mil/software/

hec-hms/documentation.aspx.

Free Software Foundation, 2014. Bash 4.3. https://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz. URL: https://ftp.gnu.org/

gnu/bash/bash-4.3.tar.gz.

Gotvald, A.J., Feaster, T.D., Weaver, J.C., 2009. Magnitude and Frequency of Rural Floods in the Southeastern United States,

2006: Volume 1, Georgia. US Geological Survey Scienti�c Investigations Report 2009-5043. U.S. Department of the Interior,

U.S. Geological Survey.

Gravelius, H., 1914. Grundriÿ der gesamten gewässerkunde, band 1: Fluÿkunde. Compendium of Hydrology I, 265�278.

Cho: Preprint submitted to Elsevier Page 23 of 24

https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview
https://github.com/esri/arcgis-pro-sdk/wiki/ProConcepts-Migrating-to-ArcGIS-Pro
https://github.com/esri/arcgis-pro-sdk/wiki/ProConcepts-Migrating-to-ArcGIS-Pro
http://www.hec.usace.army.mil/software/hec-hms/documentation.aspx
http://www.hec.usace.army.mil/software/hec-hms/documentation.aspx
https://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz
https://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz
https://ftp.gnu.org/gnu/bash/bash-4.3.tar.gz

A recursive algorithm for calculating the longest �ow path and its iterative implementation

Hack, J.T., 1957. Studies of longitudinal stream pro�les in Virginia and Maryland. Geological Survey Professional Paper 294-B,

45�97. URL: https://pubs.usgs.gov/pp/0294b/report.pdf.

Huang, P.C., Lee, K.T., 2016. Distinctions of geomorphological properties caused by di�erent �ow-direction predictions from

digital elevation models. International Journal of Geographical Information Science 30, 168�185. doi:doi:10.1080/13658816.

2015.1079913.

Kernighan, B.W., Ritchie, D.M., 1988. The C Programming Language. 2nd ed., Prentice Hall, Inc. URL: https://www.cs.

princeton.edu/~bwk/cbook.html.

Lee, S., Min, H., Yoon, S., 2016. Will solid-state drives accelerate your bioinformatics? In-depth pro�leing, performance

analysis and beyond. Brie�ngs in Bioinformaticss 17, 713�727. doi:doi:10.1093/bib/bbv073.

Maidment, D., Djokic, D. (Eds.), 2000. Hydrologic and Hydraulic Modeling Support with Geographic Information Systems.

Esri Press.

Maidment, D.R. (Ed.), 2002. Arc Hydro: GIS for Water Resources. 3rd ed., Esri Press.

Mesa, O.J., Gupta, V.K., 1987. On the main channel length-area relationship for channel networks. Water Resources Research

23, 2119�2122. doi:doi:10.1029/WR023i011p02119.

Micheloni, R., Olivo, P., 2017. Solid-state drives (SSDs), in: Proceedings of the IEEE, IEEE. pp. 1586�1588. doi:doi:

10.1109/JPROC.2017.2727228.

Microsoft Corporation, 2020. Introduction to .NET core. URL: https://docs.microsoft.com/en-us/dotnet/core/

introduction.

Neteler, M., Bowman, M.H., Landa, M., Metz, M., 2012. GRASS GIS: A multi-purpose open source GIS. Environmental

Modelling & Software 31, 124�130. doi:doi:10.1016/j.envsoft.2011.11.014.

Neteler, M., Mitasova, H., 2008. Open Source GIS: A GRASS GIS Approach. 3rd ed., Springer, New York. URL: https:

//grassbook.org/.

Olivera, F., 2001. Extracting hydrologic information from spatial data for HMS modeling. Journal of Hydrologic Engineering

6, 524�530. doi:doi:10.1061/(ASCE)1084-0699(2001)6:6(524).

Olivera, F., Maidment, D., 1998. Geographic information system use for hydrologic data development for design of highway

drainage facilities. Transportation Research Record: Journal of the Transportation Research Board 1625, 131�138. doi:doi:

10.3141/1625-17.

Qin, C.Z., Zhan, L.J., Zhu, A.X., 2014. How to apply the Geospatial Data Abstraction Library (GDAL) properly to parallel

geospatial raster I/O? Transactions in GIS 18, 950�957.

Reese, R., 2013. Understanding and Using C Pointers. O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA

95472.

Rigon, R., Rodriguez-Iturbe, I., Maritan, A., Giacometti, A., Tarboton, D.G., Rinaldo, A., 1996. On Hack's law. Water

Resources Research 32, 3367�3374. doi:doi:10.1029/96WR02397.

Rossman, L.A., Huber, W.C., 2016. Storm Water Management Tool Reference Manual Volume I�Hydrology (Revised). Na-

tional Risk Management Laboratory, O�ce of Research and Development, U.S. Environmental Protection Agency. Cincin-

nati, OH.

van Rossum, G., Drake, F.L., 2009. Python 3 Reference Manual. CreateSpace, Scotts Valley, CA.

Sassolas-Serrayet, T., Cattin, R., Ferry, M., 2018. The shape of watersheds. Nature Communications 9, 3791. doi:doi:

10.1038/s41467-018-06210-4.

Smith, P.N.H., 1995. Hydrologic data development system. Transportation Research Record: Journal of the Transportation

Research Board 1599, 118�127. doi:doi:10.3141/1599-15.

USGS, 2020. U.S. Geological Survey. One arc-second National Elevation Dataset (NED). ftp://rockyftp.cr.usgs.gov/

vdelivery/Datasets/Staged/NED/1/IMG. Accessed in May 2020.

Wang, Y., Lee, V., Wei, G.Y., Brooks, D., 2019. Predicting new workload or CPU performance by analyzing public datasets.

ACM Transactions on Architecture and Code Optimization 15, 53. doi:doi:10.1145/3284127.

Williams-Sether, T., 2015. Regional Regression Equations to Estimate Peak-Flow Frequency at Sites in North Dakota Using

Data through 2009. US Geological Survey Scienti�c Investigations Report 2015-5096. U.S. Department of the Interior, U.S.

Geological Survey.

Cho: Preprint submitted to Elsevier Page 24 of 24

https://pubs.usgs.gov/pp/0294b/report.pdf
https://doi.org/10.1080/13658816.2015.1079913
https://doi.org/10.1080/13658816.2015.1079913
https://www.cs.princeton.edu/~bwk/cbook.html
https://www.cs.princeton.edu/~bwk/cbook.html
https://doi.org/10.1093/bib/bbv073
https://doi.org/10.1029/WR023i011p02119
https://doi.org/10.1109/JPROC.2017.2727228
https://doi.org/10.1109/JPROC.2017.2727228
https://docs.microsoft.com/en-us/dotnet/core/introduction
https://docs.microsoft.com/en-us/dotnet/core/introduction
https://doi.org/10.1016/j.envsoft.2011.11.014
https://grassbook.org/
https://grassbook.org/
https://doi.org/10.1061/(ASCE)1084-0699(2001)6:6(524)
https://doi.org/10.3141/1625-17
https://doi.org/10.3141/1625-17
https://doi.org/10.1029/96WR02397
https://doi.org/10.1038/s41467-018-06210-4
https://doi.org/10.1038/s41467-018-06210-4
https://doi.org/10.3141/1599-15
ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/1/IMG
ftp://rockyftp.cr.usgs.gov/vdelivery/Datasets/Staged/NED/1/IMG
https://doi.org/10.1145/3284127

	Introduction
	Background
	Smith's flow-length-based approach
	GRASS GIS modules
	Arc Hydro tool

	Methods
	Recursive definition of the longest flow path
	Branching strategy
	Longest and shortest longest flow lengths
	New GRASS GIS module
	Benchmark experiments

	Results
	Validation of longest flow paths
	Comparisons of elapsed times

	Discussion
	Conclusions

